Prediction of Co2 Future Prices for Energy Risk Management via Neural Network Adapted Stochastic Processes
نویسندگان
چکیده
Abstract Energy risk management requires an efficient prediction of CO2 future prices. We apply a neural network calibrated stochastic model to predict day ahead future prices suitable for risk management with a given time horizon (e.g. 10 business days). The model is training neural perceptron layers to learn the weights of historical time series points within a past horizon equal to the the memory depth (e.g. previous 10 business days). With this weights, the parameters of the stochastic model are optimized, and the day ahead carbon future price is computed. Iterating these steps, we obtain price forecasts, which demonstrate the learning efficiency of our method, which essentially corresponds to a stochastic process with time-dependent parameters, the dynamics of the parameters being themselves learned continuously by the neural network. The back propagation in training the previous weights is limited by the memory depth. The latter is the analogue of the maximal time lag of an autoregressive processes.
منابع مشابه
Simulation and Prediction of Wind Speeds: A Neural Network for Weibull
Abstract. Wind as a resource of renewable energy has obtained an important share of the energy market already. Therefore simulation and prediction of wind speeds is essential for both, for engineers and energy traders. In this paper we analyze the surface wind speed data from three prototypic locations: coastal region (Rotterdam), undulating forest landscape few 100 m above sea level(Kassel), ...
متن کاملModeling and prediction of time-series of monthly copper prices
One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...
متن کاملPrediction of Energy Consumption in the First Line of Tehran Metro: GMDH Neural Network Approach
Today, energy and its consumption are the main strategic plan of organizations and also the development of urban transport systems by considering a variety of economic, scientific, industrial, climate and growing urbanization is essential. Analysis of past trends in energy is the key to predict future trends, with regard to the rate of development of metro, for planning and future-oriented macr...
متن کاملMedium Term Hydroelectric Production Planning - A Multistage Stochastic Optimization Model
Multistage stochastic programming is a key technology for making decisions over time in an uncertain environment. One of the promising areas in which this technology is implementable, is medium term planning of electricity production and trading where decision makers are typically faced with uncertain parameters (such as future demands and market prices) that can be described by stochastic proc...
متن کاملComparing Prediction Power of Artificial Neural Networks Compound Models in Predicting Credit Default Swap Prices through Black–Scholes–Merton Model
Default risk is one of the most important types of risks, and credit default swap (CDS) is one of the most effective financial instruments to cover such risks. The lack of these instruments may reduce investment attraction, particularly for international investors, and impose potential losses on the economy of the countries lacking such financial instruments, among them, Iran. After the 2007 fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014